503 TECHNICAL MANUAL

VOLUME 2 : PROGRAMMING INFORMATION
PART 1 : PROGRAMMING SYSTEMS

EFCTION 2

SYMBOLIC ASSEMBLY

CHAPTER

(Chapters 1-4 ineclusive have already been
issued on a provisional basis

Elliott Computing Division, Elliott Bros. (London) Ltd.
Elstree Way, Borchamwood, Herts,

The contents of this Velume are liable to
alteration without notice.

May, 1963,

CHAPTER 5.

"REPLACE" AND "MODIFY" STATEMENTS

1) Replacement Statements: a general description

The sections before this point describe the use of identifiers
to find Symbolic Assembly Code programs in the store of the 503,
and for this purpose an identifier is used to single out a
particular, but unknown, location in the storc, This chapter
describes a way in which whole sections of symbolic assembly code
may be identified, so that they can afterwards be assembled together
into a program,

A section of symbolic assembly code of this type will be
called a "replacement-text", and the identifier associated with it
a "replacement-identifier". The Symbolic Assembly Program will
always replace the identifier with the appropriate text, if the
identifier is given as part of the input program to be assembled,
(The previous chapter gave a description of the replacement-text
00 LINK/4O 1, for which the replacement-identifier was BXIT.)

This facility can also be used to medify and correct axisting
Symbolic Assembly Code tapes, because a replaccment-identifier can
also be an identifier already in use in the same program, if
desired. This makes it possible to modify a program at any point
where its tape makes use of an identifier. However, an identifier
will not, in general, pin-point a unique point on the tape, as it
will almost certainly be given again somewhere else in the program,

It is not esscntial to specify a replascement-text when its
replacement-identifier is introduced: in certain circumstances it
is sufficient to give the source of the text, so that it can be
found when the identifier is called by name. This source could be
a second recader, for example. Hence it is possible to use tapes of
standard functions, each function being specified in the form of a
replacement-text.

Finally, there is a parameter facility which makes it possible
to specify parts of a replacement-text at the time when the text is
assembled into the vprogram.

2) Form in which replacements are specified
Replacements are specified in two stages. These are:-

(1) Introduction of the identifier by which the replacement
is to be known, and
(2) Specification of the text of the replacement.

The text does not have to bec specified at Stage 1; however,
it must be at hand when required for insertion into a program,

A replacement is called whenever SAP reads its identifier
while assembling a program, This makes SAP search for th?
appropriate replacement-text. “Then this is found, it is input,
and SAP then passes on to the next code instructions. The
identifiers used within a replacement-text assume, in general,
the meanings which are current when the replacements are made.

3) Recplacement Introductions, their form

A replacement is introduced by giving its identifier and the
source of its text, (so that the text may be found when needed).
The sources recognised at the moment are,

R the second reader

S - the store
T - the typewriter
Z - no source
Introductions are effected by listing the replacement
identifiers in the usual way, after the basic name replace, each

identifier being followed by an equals-sign and the letter which
corrcsponds to the source of its text.

e.g. replace PRINT=R, INPUT=R, Mod 17=T;

If the source is given as 8 (the Store), the replacement text
must follow immediately, enclosed in diamond brackets. The source,
if unspecified, is understood to be 8.

e.g. replace exhorttext of exhort..»

A replacement-identifier may be associated with a different
text by re-introducing it, or its use as a replaccment-identifier
may be stopped altogether, by introducing it as belonging to
source Z.

Certain identifiers are so positioned that they can only be
interpreted as replacement-identifiers: for example, identifiers
on lines by themselves, These are ignored by SAP if they are
unintroduced when read. In this respect also, rcolacements
introduced as belonging tc source Z are considered to be
unintroduced,

Replacements should not be introducecd outside SAC programs,

L) Replacement-Texts.

Parameters

Any section of SAC may be used as a replaccment text; this
includes anything from a single identifier or a function to a
complete section of SAC, including data-, label-, (and even
replacement-) introductions cte. (But this text should not begin
or end with eny incomplete introduction or instruction). As

2 B

Replacement-Texts.
Parameters (continued)

rresent in the source from which it is to te drawn, a replacement-
text should invariably be enclosed within diamond brackets, and
preceded by the appropriate replacement-identifier.

The text employs identificrs of 3 different types. These
will be referred to in later sections as Type A, Type B, and Type C.
They are:

Type (A) Label, data and block identifiers. Thesec have
been described in previous chaptcrs.

Type (B) Replacement-identifiers, Replacements may call each
other to any depth, (though a replacement cannot call upon
itself, since this would lead to an infinite recursion -

see Section 6),

Type (C) Parameter-identifiers; these are identifiers which
may be "re-named" at the time of inserting the replacement
into a program. A parameter-identifier could be renamed

as -
(1) an integer

or (ii) a constant enclosed within diasmond brackets; which
is equivalent to the address of a location
containing the constant thus enclosed

or (iii) another identifier, not itself a parameter.

"Parameter-identifiers" will be subscquently referred to as
"formal-parameters", and their permitted renamings or replacements
will be termed "actual-varameters",

The formal paramecters of a replacement, if any, are listed
with and just before its text. A semicolon should be used to
separate them from the text.

For example, a text might be given as,

CCPY {reader, writer;
again) 060 : 71 reader
20 work / 7L writer
LO again)

in which "reader" and "writer" are the formal parameters,

The separating semicolon must always appear just before the
replacement text, gven if there are no parameters,

The actual paremeters are given at the time of calling the
replacement into the assembled program, This is done by listing them
Just after the replacement— identifier, enclosed in round brackets,
and in the order sect up by the formal-parameter list.

na

02,5

Replacement-Texts.
Parameters (continued)

Hence COPY (2048, LO96)
is eguivalent tn

again) 060 : 71 2048
20 work / 74 L0O96
LO again
using the previous example,

5) Interpretation of "Ambiguous" Identifiers

e e

(i) The "order of precedence" set up among the identifiers is
Type C before Type B before Type A
The "meaning" or reference, of an identifier which belongs to
more than one of the groups A B and C may be found by referring to
this order of precedence, For example, a formal parameter will

always be interpreted as such, even though its identifier is also
used as & replacement-identifier or a label-identifier.

Thus, replacement-statements do not affect formal-parameters;
but they do afflect actual-parameters which are also identifiers.

For example, (as might be expected) the effect of the .
introduction preplace whichone :thatone; , thatone{’+1,, , thisone{ +2%

GET <whichone; 30 whichone} ;

on the instruction
GET (thisone)
is to give 30 [+2)
The identifier "whichone" has been used as both a replacement-

identifier and a parsmeter: its use as a formal-parameter takes
precedence over its use as a replacement-identifier.

Thus, on calling the replacement GET, its formal-parameter

"whichone" becomes the actual-parameter "thisone"; and "thisone"
identifies the replacement "thisone" +2 , so that the total
effect of

GET <{thisone®
is 30 423

(ii) A formal parameter only operates within its own replace-
ment text; it will not operate within any replacement which has been

2.1.2.5

Interpretation of "Ambigucus" Identifiers (continued)

rested inside that replacement,
Example, the effect of

replace A \B; 10 B:20C> , B{;E, , C
on the instructions

P
-

v

L
Xl

30 B
A(D)
is to give
30 E
10 D:20 E

A's formal parameter, B, has no effect outside A's text, so
that the identifier in

30 B
is only operated on by the replacement
B ;B , to give
30 B.
A(D) is replaced by 10 B: 20C . B, being a formal psaranmeter,
becomes the actual parameter D. C is affected by the replacement
statement C (; B, , but the text of this replacement, B, is not

a_refcrence to the formal parameter B, but to the replacement B,
The total effect on this order-pair is thus

10D : 20 E

(iii) A replacement's identifier could be quoted in its owm
text, either explicitly, or else as part of the text of one of the
rested replacements. This would be tsken as a reference to some
varameter -, data-, label-, or block-clement.

6) The Different Scurces

(i) Section 3 outlined the way in which replaccments could be
introduced to different sources, If this source was given as the
typewriter, then

insert "identifienr"

will be output on the typewriter whenever "identifier" is called as

a replacement, and SAP will wait for the text to be typed in., This
text may vary from occasion to occasion, SAP will take "identifier"
itself as the text if the operator types the character =

Incorrectly typed texts may be cancelled by typing the non-
escapable character , but the text has then to be input from its
beginning,

2.1 245
The Different Sources(continued)

(ii) If the identifiers A, B, ... have been introduced as
replacements, which are to be input from the same source, then
the instruction,

J.El-l B’ . w

on a new line causes them to be searched for, and input in the
order in which they are found.

This means that a functions-tape may contain the replacements
A,B,C,... in any order, so that the tape need only be read once,
and all the replacements will be searched and input.

3 Modify Statements

The effect which a Replace-Statement has on a SAC program
is that the Replacement-text is substituted for the Replacement-
identifier, wherever the latter occurs in the program,

Modify Statements are similar, except that:

(i) Whole sections of program may be deleted when the
modification is made

and (ii) Modifications are only applied to labelled sections of
program,

Thus 3 bits of information should be specified in a
modification introduction.

(a) The modification-identifier. This is always the name
of a label marking the position in the program at which the text
is to be inserted.

(b) The number of instructions tc be deleted from the
program by the modification. This number may be zero; if greater,
it is taken to include the instruction labelled by the modification-
identifier,

When counting the number of instructions to be deleted by a
modification, take whole words other than order-pairs as single
instructions., Labels belong to the instructions which they
identify, and the control names begin, end, data, together with
the lists of identifiers which follow them, are also counted as
single instructions,

(¢) ZThe source from which the modification-text is to be_
drawm,

Replace and Modify-Statements are identical in all other
respects.

2:1.2.5

Modify Statements (continued)

Example: the introduction
modify L1)O €304 A} 3
changes the text

30 B
L1)20 C
to 30 B
L1i)oh A
20 C

Note that the modification identifier is followed by a
closed bracket in these introductions.

Example : the introduction
modify L1)1 4 ;L2) ohAa :+ 20D)
changes the text 30B ¢+ L1)20C
te 30 B
L2)OLA : 20 D

